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Spin waves in the spin-flop phase of RbMnFs 
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t Oxford Physics, Clmndon Laboratory, Parks Road, Oxford OX1 3PU. UK 
t lnstitut Lame-Langevin, Grenoble, F m c e  

Received I September 1994 

Abstract. The spin-wave excitations of the near-ideal 3D Heisenberg antiferromagnet RbMnF, 
have been measured in the presence of M applied field using neutron scattering. Detailed 
measurements of both the wave vector and held dependence of the excitations were made for 
fields up to 5.7 T. For applied fields > 0.26 T. the spins undergo a spin-Aop transition. In 
this phase the twofold degeneracy of the zero-field spin waves is lined. A rigorous analysis of 
the data, allowing for the effects of instrumental resolution. shows that the excitations are well 
explained by linear spin-wave theory. No evidence is found for higher-order processes. such as 
have been found in systems of lower dimensionality 

1. Introduction 

RbMnF3 is probably the closest realization of an isotropic, 3D Heisenberg antiferromagnet 
(AF) [l]. It has a cubic perovskite structure with a lattice spacing of a = 4.218 .& [I]. 
The orbital moment of each manganese ion is quenched by the cubic crystal field and it 
carries a spin-only moment of quantum number S = 512. Windsor and Stevenson [2] 
have made measurementS of the dispersion of the magnons in RbMnF3 in zero field using 
neutron scattering. They were able to explain their results using a linear spin-wave theory 
with an isotropic exchange constant J of 0.29f0.03 meV between nearest neighbours, 
and a second-neighbour constant of less than 0.02 meV. In fact the next-nearest-neighbour 
exchange strengths in perovskite fluorites are normally only of the order of 1% of the 
nearest-neighbour exchange value [3]. Antiferromagnetic resonance (AFMR) measurements 
give a magnetic anisotropy field of only 4.5 Oe 141 and [5], which is only some 6 x 
that of the exchange field. The low value of the anisotropy field can be explained in that 
the Mn2+ cation has no orbital moment and there is no dipolar interaction because of the 
cubic symmetry of the site. The magnetic moments order at temperatures below the N&l 
ordering temperature, TN = 83 K, and in this phase the spins align antiferromagnetically 
along the [l, I ,  11 crystallographic easy directions [4] and [5]. The structure of RbMnFS 
and the four magnetic easy axes are illustrated in figure 1 .  

When a uniform magnetic field greater than 0.26 T i s  applied along the ordering direction 
of the system [6], [I, I, I] direction say, in the 3D N k l  ordered phase, a spin-flop transition 
occurs. This transition field is lower for non-easy-axis directions. In this phase the MnZ+ 
moments align antiferromagnetically and almost perpendicular to the field but slightly canted 
out of the plane in the direction of the field to minimize their Zeeman energy. In the absence 
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Figure 1. The crystal structure of RbMnF3. The magnetic easy axes are indicated by the dotted 
lines. 

of a magnetic field the spin waves are twofold degenerate, and Windsor and Stevenson [2] 
were able to observe a single magnon branch only. The application of a field breaks the 
rotational symmetry of the modes, which precess around the ordering direction perpendicular 
to the field, and the dispersion of the low-energy spin waves is expected to split into two 
branches. The spin-wave dynamics of a 3D Heisenberg AF in such a spin-flop phase has 
not previously been measured. In the analogous onedimensional systems [7] two-magnon 
processes give rise to additional modes, and there is evidence that this may also occur in 
two-dimensional systems [8]. Such excited modes are a consequence of zero-point spin 
fluctuations which are largely supposed in the 3D case. The aim of our experiment was to 
measure the wavevector and field dependence of the splitting between the magnon branches 
in RbMnF,, and to compare our measurements with the predictions of linear spin-wave 
theory. 

The paper is organized in the following way. After outlining the relevant theory in 
section 2, we continue by presenting our experimental method in section 3. In section 4 the 
results and analysis are given. 

2. Antiferromagnetic spin waves in a n  applied field 

In this section the excitations and field-induced transitions between the ordered phases 
of a 3D Heisenberg AF in an applied field are considered in more detail. Figure 2 is a 
generalized phase diagram of this system for the case where a magnetic field is applied 
along an anisotropy direction 191. The ordered system, which consists of a simple cubic 
lattice of Mn sites, can be subdivided into two interpenetrating body-centred cubic sublattices 
denoted by A and B. In the Niel (AF) phase the spins on the A sublattice align along the 
(++direction, where z is an anisotropy direction, and those on the B sublattice point in the 
(-+direction. For simplicity the case where the magnetic field is applied down a unique 
anisotropy direction is considered first. The Hamiltonian for this system can then be written 
as 
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where 1 counts over sublattice A and m is over sublattice B, B is the magnitude of the 
applied field, B, is an alternating anisotropy field and J is the exchange energy which 
takes a non-zero value for nearest neighbours only. The calculation of the excitation energies 
for this Hamiltonian is straightforward using a standard linear spin-wave approach and is 
derived in many places (see, for example, [ 101 and [ 111). 

Paramagnetic 

Spin-Flop 1 

T N  
Figure 2. A schematic phase diagram for a uniaxial antiferromagnet in an applied magnetic 
field. The antifemmagnetic-spin-Rop transition is indicated by m w s .  

The dispersion of the spin-wave excitations consists of two magnon branches which are 
split by the field and are given by 

where = 2zSJ/h, mA = g&BB,,/f, and OH = g&BB/h. The term 

is the sum over the z nearest-neighbour vectors 6. In zero field the two spin-wave 
branches, defined in equation (2), are degenerate. As the strength of the applied field 
B is increased from zero, the upper and lower branches move upwards and downwards 
in energy, respectively. The lower-branch frequency of equation (2) becomes negative and 
therefore unstable for applied fields B that satisfy the condition 

B > B , U = B ,  Jcm 1 + - .  (3) 

Thus for applied fields greater than the critical field B," a spin-flop transition is induced 
and the system enters a spin-flop phase, where the spins then lie almost perpendicular to 
the field direction. Figure 2 shows the transition boundary between the spin-flop and AP 
phases as a function of both applied field B and temperature T, as calculated by Anderson 
and Callen [12] using temperature renormalization of the spin-wave energies. The applied 
transition fields between the spin-flop and AF phases for a uniaxial system exhibit hysteresis, 
and the transition is first order in nature. 
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2.1. Spinlpop excitations 

In the spin-Hop phase the spins cant out of the x-y plane by a small angle y ~ .  The torques 
induced on a spin by the applied field and exchange batance for an angle (0 that satisfies the 
relation sin@) = W H / ( ~ W E  + W A )  [13]. The calculation of the spin-wave frequencies in the 
spin-Hop phase has been carried out by Wang and Callen [I31 for the uniaxial Hamiltonian. 
(In their analysis Wang and Callen include an extra term 5 = (1  - (2S)-')'/' to account for 
quantum corrections to the low-lying spin states. As this correction is small for large spin 
S it is not included in any of the results quoted here.) The spin-wave frequencies are split 
by the field into two branches, and the dispersion of the modes as a function of the wave 
vector k is given by 

D A Tennanr et a1 

U: = we[l i y t ] ' P [ l  zk yt cos(2p) - (WA/..) cos2((o)]'/2. (4) 

For small values of k the lower branch is almost linear in k because of the first square root 
and it goes to zero at k = 0. The upper mode has an energy gap at k = 0 which decreases 
as the applied field strength B is decreased. The spin-flop phase becomes unstable for 
negative spin-wave energies and this occurs for fields B lower than a critical field, 

below which a transition from the spin-flop to the AF phase occurs. The field BL is lower 
than B,U and so there is a hysteresis in the applied transition field between the two ordered 
phases. The magnitude of the hysteresis depends on the relative magnitudes of exchange and 
anisotropy fields and in the case where W E  >> wA the two critical fields BA and B," converge 
to the same value, given by B m ( 2 w ~ / w ~ ) " Z .  Antiferromagnetic resonance measurements 
of the transition fields in the 3D uniaxial AF compounds MnFz and MnBr2.4HzO [ 141 have 
established such hysteresis effects and the measured critical fields agree with the values 
calculated using equations (3) and (5). We note that the anisotropy of RbMnFs is very much 
smaller than that of MnFz and MnBr24Hz0, and in addition RbMnF3 has four easy axes, 
rather than uniaxial anisotropy, which complicates the measurements somewhat. However, 
measurements of the critical field have been made for a field applied down the ordering 
direction [6], and this value agrees with the value of 0.26 T calculated from the known 
exchange and anisotropy parameters. 

In the case where B is applied down the [ 1. -1,Ol direction of RbMnF3, the geometry 
used in our experiment, both the [ l , L  I ]  and [ I ,  1,-1] easy directions are perpendicular 
to the applied field and the spins are found to lie almost perpendicular to the [ l ,  -1.01 
direction for all B [6]. Consequently no &spin-flop transition is expected to be observed 
for RbMnF3 for a field applied along [I,-1,0]. 

The modification of the analysis of Wang and Callen [ 131 for the uniaxial Hamiltonian 
to take account of an in-plane anisotropy in the spin-flop phase is straightforward. Such 
a case occurs for the magnetic field applied down [ l ,  -l,O]. The anisotropy field in the 
ordered phase will be directed along each spin direction in the spin-Hop phase with the field 
in the z-direction of the Hamiltonian, equation ( I ) ,  becoming zero. As each magnon is a 
deviation of ASz = f l ,  the in-plane anisotropy contribution to each sublattice is then given 
by WAaX+ak and wAbk+bt, respectively, where at and bt are the usual sublattice spin-wave 
operators. The result of this term in the excitation spectrum can be seen by inspection of 
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equations (1 1) and (21) in the paper of Wang and Callen [13]. Making a simple substitution 
into equation (7), where the out-of-plane anisotropy is taken as zero, gives the dispersion 

where WA is now the frequency of the in-plane anisotropy as defined above in equation (2). 
In zero field the spin waves are identical to those of the uniaxial AF, and in the case where 
the anisotropy contribution W A  is zero they are identical to the result for the spin-flop 
excitations. 

2.2. Neutron scattering cross sections 

The one-magnon scattering cmss sections of unpolarized neutrons have been calculated by 
Lovesey [ 151 for the spin-flop phase. The case where no staggered field is applied, B,. = 0, 
was considered, which is a reasonable approximation for RbMnF3. The cross section for 
a scattering process in which the neutron loses energy ho and wave-vector transfer Q can 
be written in terms of the spin-spin correlations, and for the case of spin-only scattering as 
applies to RbMnF3, the dynamical cross-section is 

where 01 and ,3 denote Cartesian component% Lovesey in [I51 has calculated the spin-spin 
correlations and his results of relevance to the argument are quoted here. For convenience 
a function Z,(o) is defined in [15] to simplify the resulting expressions, such that 

where the labels f = 1 and 2 denote the lower and upper branches respectively, and 
nf = (exp(-wf/ksT) - I)- '  is the usual Base occupation function. By defining p, = 1 
and pz = -1, the structure factors for the spin-wave excitations are given by the expressions 

X, = (I  + pfyx  sin2(q7))(l + sinz(q7)Q: + cos2(q7)Q~) 

+p/ykcosz(yl)(l - ( I  +cos2(q7)Q: - (I  +sinz(yl))Q:) 

r, =cos2~q7)[(l - p , n ) Q ; -  ( 1 + ~ ~ ~ ~ ) ] + ~ i n ~ ( y l ) ( ( 1 + ~ y ~ x ) ( l + ~ ~ ~ ) ( 1 + Q : ) }  

(9) 

and 

+ (1 + COS(2yl)) Q: (10) 

where the spins lie in the y-z plane. Using this notation the scattering cross-section derived 
by Lovesey for a mode at reduced wave vector k is then given by 

where the sum over the sublattice m is non-zero only when Q + k = 7 is a reciprocal 
lattice vector of the sublattice. At small wave vectors k away from T the spin waves exhibit 
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the usual ( l h )  structure factor associated with antiferromagnets. The case of interest to 
this discussion is that of scattering near a superlattice peak (cos(6 .T)  = -1) and for small 
applied fields (sin 9 < I ) .  The spins are then almost aligned along the y-direction. The 
lower spin-wave branch corresponds to the in-plane component (IPC) and has correlations 
in the plane along the x-direction, whereas the upper mode is the out-of-plane component 
(OPC) and the spin correlations from this mode are perpendicular to the plane, in the z -  
direction. Neutrons measure the spin components perpendicular to the wave vector transfer 
Q, and so for a scattering vector in the spin-flop plane the intensity of the O K  will be 
independent of the actual direction of those spins within the plane. However, the intensity 
of the IPC does depend on this direction, and consequently has a lower overall intensity 
factor. The dynamical cross-section for the inelastic scattering of unpolarized neutrons is 
approximated by the simple expression 
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(12) 

where A, = (1 - Q:) and A:! = (1 - Q:), A is a scale factor, and Zl(o) and Zz(w) 
corresponding to the lower and upper branches, equation (8). 

Ikl 1 
Ik'l S(Q, 0) % A - ; ( A ~ z i ( w )  t AzZdw)) 

3. Experimental details 

The measurements were performed on the IN12 triple-axis spectrometer at the Institut Laue- 
Langevin, in Grenoble, France. The pre-sample monochromation of the neutron beam 
is provided by a variable-curvature pyrolytic graphite (PG) (002) monochromator and the 
energy of the scattered beam analysed using the (002) reflection from a flat PG crystal. The 
sample was a large single crystal (5 cm3) of RbMnF3. It was mounted in the vertical- 
field cryomagnet with the [ l ,  -1,Ol axis vertical so as to allow access to the (-;+ -+, ;) 
reciprocal-lattice point. The [1,-1,0] scattering plane of RbMnF3 is shown in figure 3. 
The instrument collimation was chosen at 33'-30'-30-30' giving an in-plane wave vector 
resolution measured at 0.01 A full width at half maximum (FWHM) and an energy width 
of 0.03 meV (FWHM). Measurements were performed with the wave vector of the incident 
neutrons being held fixed and the spectrometer in the focused (W) configuration. The kj- 
values used in the experiment were between 1.25 A-' and 1.40 A-' and a cooled beryllium 
filter was inserted before the sample to reduce contamination from higher-order components 
of the beam. The sample temperature was maintained at a constant T = 4.3 K throughout 
the experiment. Measurements of the splitting of the spin-wave branches were made in 
magnetic fields from 0-5.68 T. Scans in both neutron energy loss and gain were performed 
for each field at a series of neutron wave vector transfers Q directed along the [-1, -1, 11 
direction, with these measurements being made around the antiferromagnetic reciprocal- 
lattice point (-f4 -;, +) as indicated in figure 3. 

4. Results and analysis 

In an applied field of B = 5.68 T a constant-Q scan at an antiferromagnetic zone centre 
sM = (-i, -4, -$) revealed an excitation at 0.6 meV, shown in figure 4, in addition to 
a strong quasi-elastic component. The excitation frequency of the upper mode decreases 
with field; in zero field this excitation was found to be absent. When scans were performed 
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Figure 3. The [ I ,  1, -11 scattering plane of RbMnF3. A typical scattering triangle is shown in 
solid lines. and the anisotropy directions 81 and Bz are shown as dashed lines. 

away from the zone centre, two modes were clearly resolved for wave vector transfers 
Q = T,,, + IC, for k = (-5. -5,  5 )  and 0 < r < 0.020, with the second, lower mode 
emerging from the quasi-elastic scattering. Figure 5 displays an example of one such scan 
in energy, and was taken at 5 = 0.007. At wave vectors < =- 0.020 the two modes merged 
and could no longer be resolved. 

One striking feature of the line shapes of the excitations shown in figures 4 and 5 is that 
they are strongly asymmetric in energy. This could be caused by instrumental resolution 
or else some other process such as an intrinsic broadening in energy of the spin-wave 
modes. Taking full account of the instrumental effects in the analysis allows the theoretical 
cross-section to be checked, including details of the line shapes if required. 

4.1. Resolution effects 

Before describing in detail our method of fitting the data we first consider in qualitative terms 
how the asymmetric line shapes might be explained by resolution effects. Figure 6 shows 
a representative resolution ellipsoid and simple dispersion surface of a low-lying magnon 
mode. It is clear from the figure that as the ellipsoid scans in energy, the elongation of the 
ellipsoid out of the scattering plane gives rise to a tail at higher energies in the scattering 
profile. Such an elongation is characteristic of the vertical divergence of the beam. 

The intensity of scattered neutrons Z(Q, o) at an energy o and wave vector Q is 
determined by convoluting the spin-wave cross-section S(Q. o) over the resolution volume. 
We start by defining a set of Cartesian coordinates such that the wave vector transfer Q 
is directed along the x-direction, the transverse direction in the scattering plane is directed 
along y ,  and the out-of-plane direction is along z. The predicted intensity is found by 
evaluating the four-dimensional integral 
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Figure 4. The scattered neutron intensiry for a scan of the neutron energy transfer with Q held 
fixed at the magnetic zone centre w = (-4. - 4 ,  4). 

(13) 

where ux, uy, at and uw are the dimensions of the ellipsoid in wave vector and energy 
respectively. The pole in the &-function for the lower (f = I )  and upper (f = 2) mode is 
given by the dispersion or(&), equation (6). Unfortunately the numerical evaluation of the 
4D convolution is computationally inefficient. We need to introduce suitable approximations 
in order to obtain an expression suitable for a least-squares analysis. 

The expression given in equation (13) may be simplified somewhat. First we note that 
the component of the ellipsoid along the y-direction is tangential to the energy contours 
of the dispersion surface at the point Q. as is the out-of-plane component (along the I -  
direction). The out-of-plane component is dominant and the integral over qy can safely be 
ignored at wave vector transfers away from the zone centre. At wave vector transfers close 
to the zone centre this in-plane component is included as a small geometric correction to q x ,  
Further. if the reduced wave vector transfers k are small and the dispersion, equation (6), 
can be simplified, then q ( k )  = W E ( Q ~  +o,(0)2/o,)’/2, where q ( 0 )  is the energy gap at 
the zone centre and k is the wave vector away from the zone centre. Integrating over the 
vertical component, qr gives the simplified expression 
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Figure 5. The scattered neutron intensity for a scan of lhe neutron energy transfer with Q held 
fixed at a wave-vector away from the zone centre. 

where the N,, (T)  are the Base-Einstein occupation factor n,+ 1 and n,, fo ro  positive and 
negative respectively, and qz = [(U’ - w2(0 ) ) /w i  - q:]‘/’. Note that the integration over 
the variable U‘ has a square-root singularity at o = (02(0) + (wEq,)z)”2. This integration 
can be evaluated on a computer if an open-ended integration routine such as the Romberg 
method [ 161 is used. The integration over qx was also evaluated numerically. 

4.2. Comparison with measurements 

As the measurements were made in the fixed-incident-energy configuration of the 
spectrometer, the data have been corrected for the variation in resolution volume with 
the final wave vector kfind [17]. The data are corrected by dividing each point by the factor 
kin,, cot (PA where (OA is the analyser Bragg angle. The corrected data are then proportional 
to the scattering cross-section S(Q. w )  and so can be modelled by a calculation of the 
double integral in equation (14). A least-squares method [16] was used to fit the exchange 
and anisotropy parameters of the Hamiltonian to data. The initial resolution parameters 
were determined for the scan using the computer program RESCAL. A fit to the zone-centre. 
scan in a field of 5.68 T gave an energy gap of 0.655 meV. By comparing scattering data 
on the energy gain side with that on the loss side the temperature was fixed at a value of 
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Figure 6. A diagrammatic representation of a constant-Q scan The resolution ellipsoid is 
shown passing through the dispersion. 

T = 4.3 K. Scans further.out in { are more sensitive to the exchange energy J, and fitting 
to these gave a value of 0.32rt0.025 meV which is in agreement with the value of Windsor 
and Stevenson (0.2910.03 meV) [2]. 

By varying the vertical resolution width in the fits, a value of 0.08 A-' was able to fit all 
scans at each wave vector and applied field B consistently. An example fit to a zone-centre 
scan is shown as the solid line in figure 7, this fit has a normalized x 2  - 1. To investigate 
the importance of the vertical resolution a zone-centre scan was also performed in a field 
of 5.68 T using a defocused monochromator. Presumably the flat monochromator has a 
smaller vertical divergence of the neutron beam. When the resolution was again allowed 
to vary, the width in this case was found to be 0.06 A-' as compared with that calculated 
using the computer program RESCAL (0.04 .&-I), A possible reason for the discrepancy 
in calculated width is that a Gaussian resolution profile for the vertical divergence was 
assumed. If the actual profile is trapezoidal then the effective vertical resolution is increased. 
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Neutron Energy Transfer (mev) 

Figure 7. The solid Line is a fit as described in the text to the linear spin-wave theory 

Calculations using such simple profiles are in line with this interpretation. To account for 
the vertical resolution with any more certainty would require measurements of the out-of- 
plane resolution profile. Another possible mechanism for the line broadening induced by 
the magnetic field has been suggested in [ 161. However, the broadening would be expected 
to be symmetric and the effect is expected to be small at fields of 6 T in RbMnF3. Thus 
we conclude that the asymmetry is presumably due to the resolution of the instrument. 

Our measurements also give the relative intensities of the two modes. For each applied 
field the intensity factors A ,  and A2 of the lower (A,) and upper (Az) modes were also 
fitted, equation (12). For an applied field B of magnitude 5.68 T they were found to be 
AI/Az = 0.502f 0.001. If the spins order into two equivalent domains directed along the 
anisotropy directions [ I .  1, 11 and [ I ,  1, -11 indicated in figure 3, then the ratio would be 
0.55. However, polarized neutron measurements by Cox et a1 [I81 of the domain structure 
in an applied field B of magnitude 1.0 T directed along the [1,1,-’2] direction showed 
that the spins ordered in a random domain skucture within the plane rather than poling 
into a single domain along the uniquely perpendicular [ 1,1, I] easy direction. A random 
domain structure would give a ratio of intensities between lower and upper modes of exactly 
0.5, which agrees with the measured value. It i s  noteworthy that the applied field 5.68 T is 
considerably greater than the small anisotropy fields (4.5 G )  along the [ I ,  I ,  11 and [ I ,  1, -11 
directions and should therefore dominate the ordering process. 

Figure 8 shows the line shapes calculated using the parameters obtained above, for the 
scans made in an applied field B of magnitude 5.68 T at a series of wave vectors {. The 
scattering computed on the basis of the fitted parameters provides an excellent description 
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Figure 8. Constant-Q scam measured in a~ applied field of 5.68 T. The solid lines are calculated 
line shapes as described in the text. 

of all the scans. The dispersion for this field given by equation (6) is shown in figure 9. 
The region 0 . 5 0 ~  c 0.52, which has been covered by these scans, is shown as an inset 
on the plot. Figure IO shows the calculated line shapes for a zero-field scan, and again uses 
the same exchange and resolution parameters as figure 5. A small zone-centre anisotropy 
gap of 0.05&0.02 meV was introduced for the zero-field fit, and this has been included in 
the calculation of the line shape shown in figure 10. 

The field dependence of the zone-centre frequency as determined from measurements 
with applied fields B with magnitudes between zero and 5.68 T is shown in figure 11. 
The frequencies have been determined using least-squares fitting as outlined above and the 
results are plotted in figure I I .  Also shown in figure 11 are the predicted field behaviours 
of the gap energy in three different circumstances. The dotted line indicates the zone-centre 
energy gap of the upper modes where the field B is applied down a unique anisotropy 
axis, equation (4), and it shows the expected spin-flopAF transition at 0.26 T. The dashed 
line is the energy gap for the case where the anisotropy field B, is zero. And the solid 
line is the frequency calculated for an anisouopy field B, perpendicular to the applied 
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Figure 9. The spin-wave dispersion of RbMnF3 in M applied magnetic field of 5.68 7. The 
inset shows the dispersion close to the zone centre. 
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Figure 10. A typical mnstant-Q scan measured in zero magnetic field. No splitting of modes 
is seen. 
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Figure 11. The variation of the zone-centre energy gap as a function of applied magnetic field. 
The solid. dashed and dotted lines are from spin-wave calculations as described in me text. 

field, equation (6), which is the case here, where B has been.applied along [l, -1.01. The 
anisotropy energy determined from AFMR measurements of 4.5 Oe. [4] and 151, was used 
for these calculations. The measured frequencies are seen to be well accounted for by linear 
spin-wave theory. 

5. Summary 

The excitations in the spin-flop phase of RbMnF3 have been studied using the IN12 neutron 
triple-axis spectrometer. The magnetic field was applied down the [I .  -1 ,Ol direction. 
Constant-Q scans around the (-4, -4, i) reciprocal-lattice point show strongly asymmetric 
line shapes which were found to be the result of a poor vertical resolution. Taking this into 
account the line shapes of the measurements at all applied fields and wave vectors can be 
fitted consistently using linear spin-wave theory which also considers the in-plane anisotropy 
fields. The exchange constant determined is in good agreement with that obtained from other 
studies. No evidence of extra modes, such as occur in one- and two-dimensional systems, 
was observed. 
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